On Inverse Problems for Finite Trees
نویسنده
چکیده
In this paper two classical theorems by Levinson and Marchenko for the inverse problem of the Schrödinger equation on a compact interval are extended to finite trees. Specifically, (1) the Dirichlet eigenvalues and the Neumann data of the eigenfunctions determine the potential uniquely (a Levinson-type result) and (2) the Dirichlet eigenvalues and a set of generalized norming constants determine the potential uniquely (a Marchenko-type result). Mathematics Subject Classification (2000). Primary 34A55, Secondary: 05C05.
منابع مشابه
Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملOn Inverse Dynamical and Spectral Problems for the Wave and Schrödinger Equations on Finite Trees. the Leaf Peeling
Interest in inverse dynamical, spectral and scattering problems for differential equations on graphs is motivated by possible applications to nano-electronics and quantum waveguides and by a variety of other classical and quantum applications. Recently a new effective leaf peeling method has been proposed by S. Avdonin and P. Kurasov [3] for solving inverse problems on trees (graphs without cyc...
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کاملInverse Sturm--Liouville problems using three spectra with finite number of transmissions and parameter dependent conditions
In this manuscript, we study various by uniqueness results for inverse spectral problems of Sturm--Liouville operators using three spectrum with a finite number of discontinuities at interior points which we impose the usual transmission conditions. We consider both the cases of classical Robin and eigenparameter dependent boundary conditions.
متن کاملA novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem
Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...
متن کامل